Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[benzyltriethylammonium [tri- μ-thiocyanato- $\boldsymbol{\kappa}^{4} N: S ; \kappa^{2} S: N$-cadmate(II)]]

Luca Russo, ${ }^{\text {a }}$ Raj Pal Sharma, ${ }^{\text {b }}$ Subhranshu Sharma, ${ }^{\text {b }}$ Rajni Sharma ${ }^{\text {b }}$ and Kari Rissanen ${ }^{\text {a }}$
${ }^{\mathrm{a}}$ Nanoscience Center, Department of Chemistry, University of Jyväskylä, PO Box 35, 40014 Jyväskylä, Finland, and ${ }^{\text {b }}$ Department of Chemistry, Panjab University, Chandigarh 160 014, India

Correspondence e-mail: krissane@cc.jyu.fi

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.029$
$w R$ factor $=0.052$
Data-to-parameter ratio $=21.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\left\{\left[\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}\right) \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3}\right]\left[\mathrm{Cd}(\mathrm{SCN})_{3}\right]\right\}_{n}$, contains benzyltriethylammonium cations lying between one-dimensional chains of stoichiometry $\left\{\left[\mathrm{Cd}(\mathrm{SCN})_{3}\right]^{-}\right\}_{n}$. Each Cd^{2+} ion is $3 N, 3 S$-hexacoordinated by thiocyanate ligands in an octahedral arrangement. The asymmetric unit contains one cation and one anion.

Comment

Coordination polymers of one, two and three-dimensional infinite frameworks involving cadmium(II) have been of great interest in recent years owing to their potential applications in various fields such as non-linear optical (NLO) materials (Zhang et al., 1999; Chen et al., 2002; Liu et al., 2004). As the d^{10} configuration and softness of cadmium(II) permit a wide variety of geometries and coordination numbers, especially with the ambidentade thiocyanate (SCN^{-}) ligand, various structural types have been observed. Which structural type occurs depends on the size, shape and symmetry of the counter-cations and also on the ratio of Cd^{2+} to SCN^{-}ions.

(I)

In a continuation of our interest in the supramolecular chemistry of salts of simple metal complexes (Sharma et al., 2005, 2006), the synthesis and characterization of the title compound, (I), were undertaken. The asymmetric unit contains one benzyltriethylammonium cation, three thiocyanate anions and a cadmium cation. Each Cd^{2+} ion is $3 N, 3 S$ hexacoordinated by thiocyanate ligands in an octahedral arrangement. Thus, each S atom is trans to an N atom (Fig. 1 and Table 1). Three examples of Cd^{2+}-thiocyanate chains with the same stoichiometry and morphology (Kuniyasu et al., 1987; Chen et al., 1994, 2002) were found in the Cambridge Structural Database (CSD, Version 5.27; Allen, 2002). Both Cd-S and $\mathrm{Cd}-\mathrm{N}$ bonds lengths are in agreement with those found in analogous structures: the average observed $\mathrm{Cd}-\mathrm{S}$ bond length [2.752 (9) Å] is significantly shorter than the sum of the Shannon ionic radius (Shannon, 1976) of Cd^{2+} and the Pauling ionic radius (Pauling, 1960) of $\mathrm{S}^{-}(3.28 \AA$), indicating a significant covalent contribution. The $\mathrm{Cd}-\mathrm{N}$ bond lengths [2.340 (2) \AA] are also shorter than the sum of Shannon's ionic

Figure 1
Fragment of (I), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry codes: (a) $\frac{3}{2}-x,-\frac{1}{2}+y$, $\frac{3}{2}-z$; (b) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$.]

Figure 2
The polymeric $\left[\mathrm{Cd}(\mathrm{SCN})_{3}\right]_{n}$ chains extending along the b axis. Colour key: Cd green, C black, N blue and S yellow.
radii (2.41 \AA; Shannon, 1976). The structure contains onedimensional linear anionic chains. The chains are packed in a parallel fashion, running along the crystallographic b axis and surrounded by counter-cations (Fig. 2).

Experimental

Analytical grade reagents were used without any further purification. Benzyltriethylammonium chloride ($1.0 \mathrm{~g}, 0.005 \mathrm{~mol}$) was dissolved in 10 ml water. $\mathrm{CdCl}_{2}(0.80 \mathrm{~g}, 0.004 \mathrm{~mol})$ and ammonium thiocyanate
$(1.00 \mathrm{~g}, 0.013 \mathrm{~mol})$ were dissolved in 20 ml water by mechanical stirring. The solutions were mixed and a curd-like white solid precipitated immediately. This was filtered off and dried in air. Crystals of (I) were obtained after redissolving the white solid in an acetonewater mixture ($4: 1$) at room temperture (m.p. 363 K). Elemental analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{CdN}_{4} \mathrm{~S}_{3}$: C 35.70, H 3.66, N $12.81, \mathrm{Cd}$ 25.63%; found: C 35.66 , H 3.56, N 12.72 , Cd 25.34%.

Crystal data

$\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{~N}\right)\left[\mathrm{Cd}(\mathrm{NCS})_{3}\right]$	$Z=4$
$M_{r}=478.96$	$D_{x}=1.551 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=12.164(2) \AA$	$\mu=1.38 \mathrm{~mm}^{-1}$
$b=10.927(2) \AA$	$T=173(2) \mathrm{K}$
$c=15.952(3) \AA$	Block, colourless
$\beta=104.61(3)^{\circ}$	$0.60 \times 0.40 \times 0.20 \mathrm{~mm}$
$V=2051.8(7) \AA^{3}$	

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick 2003)
$T_{\text {min }}=0.493, T_{\text {max }}=0.771$

> 18486 measured reflections 4579 independent reflections 3895 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.031$
> $\theta_{\max }=27.4^{\circ}$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.052$
$S=1.25$
4579 reflections
217 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+1.5462 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=0.51 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.39 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Cd1-S1	$2.7543(8)$	$\mathrm{Cd} 1-\mathrm{N} 2$	
$\mathrm{Cd} 1-\mathrm{N} 1$	$2.291(2)$	$\mathrm{Cd} 1-\mathrm{S} 3$	$2.359(2)$
$\mathrm{Cd} 1-\mathrm{S} 2$	$2.7738(10)$	$\mathrm{Cd} 1-\mathrm{N} 3$	$2.7278(8)$
			$2.371(2)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{N} 1$	$176.11(5)$	$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 3$	$91.50(8)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{S} 2$	$84.32(2)$	$\mathrm{S} 2-\mathrm{Cd} 1-\mathrm{N} 2$	$172.82(5)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{N} 2$	$91.28(6)$	$\mathrm{S} 2-\mathrm{Cd} 1-\mathrm{S} 3$	$91.83(3)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{S} 3$	$85.91(3)$	$\mathrm{S} 2-\mathrm{Cd} 1-\mathrm{N} 3$	$93.37(6)$
$\mathrm{S} 1-\mathrm{Cd} 1-\mathrm{N} 3$	$90.36(6)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{S} 3$	$93.51(6)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{S} 2$	$92.17(6)$	$\mathrm{N} 2-\mathrm{Cd} 1-\mathrm{N} 3$	$80.96(8)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{N} 2$	$92.39(8)$	$\mathrm{S} 3-\mathrm{Cd} 1-\mathrm{N} 3$	$173.27(5)$
$\mathrm{N} 1-\mathrm{Cd} 1-\mathrm{S} 3$	$92.56(6)$		

H atoms were positioned gemetrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ for aromatic, $\mathrm{C}-\mathrm{H}=0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2}, and $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Data collection: COLLECT (Hooft, 1998); cell refinement: EVALCCD (Duisenberg et al., 2003); data reduction: EVALCCD; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXTL (Sheldrick, 2001), MERCURY (Version 1.4.1; Bruno et al., 2002) and CIFTAB (Sheldrick, 1993).

We thank the Academy of Finland for a research grant (KR and LR).

metal-organic papers

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Burnett, M. H. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Chen, D.-R., Hu, Q.-P., Meng, Y.-D. \& Fan, Y.-P. (1994). Jiegou Huaxue (Chin. J. Struct. Chem.), 13, 235-238. (In Chinese).

Chen, W., Liu, F. \& You, X. (2002). J. Solid State Chem. 167, 119-125.
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. \& Shreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.
Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Kuniyasu, Y., Suzuki, Y., Taniguchi, M. \& Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179-183.
Liu, F., Chen, W. \& You, X. (2004). J. Solid State Chem. 169, 199-207.

Pauling, L. (1960). In The Nature of the Chemical Bond, 3rd ed. Ithaca, New York: Cornell University Press.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sharma, R. P., Bala, R., Sharma, R., Vermani, B. K., Gill, D. S. \& Venugopalan, P. (2005). J. Coord. Chem. 58, 309-316.

Sharma, R. P., Sharma, R., Bala, R., Vermani, B. K., Gill, D. S., Salas, J. M. \& Quiros, M. (2006). J. Mol. Struct. 784, 222-227.
Sheldrick, G. M. (1993). CIFTAB. University of Göttingen, Germany. (Modified by W. Clegg, Newcastle University, England.)
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2001). SHELXTL. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
Zhang, H., Wang, X., Zhang, K. \& Teo, B. K. (1999). Coord. Chem. Rev. 183, 157-195.

[^0]: © 2006 International Union of Crystallography All rights reserved

